

Tetrahedron Letters 40 (1999) 7875-7877

Efficient diastereoselective synthesis of anti-α-bromo-β-hydroxyketones

Herbert C. Brown,* Mu-Fa Zou and P. Veeraraghavan Ramachandran *

H. C. Brown and R. B. Wetherill Laboratories of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA

Received 22 June 1999; revised 24 August 1999; accepted 25 August 1999

Abstract

anti-α-Bromo-β-hydroxyketones were synthesized in high diastereoselectivity via the enolboration of a representative series of bromomethylketones using dicyclohexylboron chloride, followed by aldolization with aldehydes. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: diastereoselective; α-halo ketones; enolboration; aldol reaction.

Diastereoselective synthesis of conformationally nonrigid systems, especially in those C-C bond forming reactions such as aldol additions, has become highly sophisticated in recent years. Since the pioneering report by Mukaiyama and Inoue, diastereo- and enantioselective crossed aldol reactions via boron enolates have been well studied by several groups and applied in several syntheses.

Enolization–aldolization of α -haloketones is an excellent route for the synthesis of α -halo- β -hydroxyketones, which can be used as precursors for the synthesis of useful intermediates, such as α -epoxyketones, α -bromoenones, and α -ynones. These intermediates have found several applications in organic syntheses. Mukaiyama and co-workers reported the synthesis of α -halo- β -hydroxyketones via tin enolates. Shibasaki and co-workers reported cross aldol reactions of α -bromoketones with stoichiometric $Zr(O\text{-}t\text{-}Bu)_4{}^5$ as well as catalytic $Sm(HMDS)_3$. Shibasaki reported that $n\text{-}Bu_2BOTf$ gave unsatisfactory results for the enolboration–aldolization of 1-bromo-2-heptanone. As part of our ongoing projects in enolboration–aldolization, we undertook to study the enolboration of α -bromoketones. Our successful results with dicyclohexylboron chloride (Chx_2BCl , 1) are presented below.

Enolboration of 2-bromoacetophenone (2a) with 1.1 equiv. of 1 in the presence of triethylamine in Et_2O at 0°C formed the enolborinate as indicated by the ¹¹B NMR spectrum (δ 53 ppm). The by-product Et_3N ·HCl was removed by filtration and the enolborinate was treated with benzaldehyde at -78°C for 3 h to form the boron aldolate. Subsequent work up with MeOH/H₂O₂ provided an 86% yield of the crude product 3a, the ¹H NMR spectrum of which revealed an *anti:syn* ratio of 95:5 (Eq. 1). Purification by flash column chromatography on silica gel yielded the pure product. The observed diastereoselectivity is

^{*} Corresponding authors.

not surprising considering the fact that 1 is an E-selective enolizing agent. In fact, the selectivity is better than that realized for the enolboration-aldolization of 3-pentanone with this reagent. The generality of this reaction was demonstrated by enolizing a series of α -bromomethyl ketones, such as 1-bromo-2-butanone (2b), 1-bromo-3-methyl-2-butanone (2c), and 1-bromo-3,3-dimethyl-2-butanone (2d). In all of these cases, we obtained the *anti*-products in $\geq 93\%$ stereoselectivity. The enolboration of 2d was slow at 0°C, but was complete in 2 h at room temperature (rt).

OBChx₂

R

Br

$$Chx_2BCl(1)$$
 Et_3N, Et_2O
 0 °C, 1 h

Br

3a: R = Ph, R' = Ph, 86% yld, 95% anti

3b: R = Et, R' = Ph, 88% yld, 93% anti

3c: R = i-Pr, R' = Ph, 82% yld, 93% anti

3d: R = t-Bu, R' = Ph, 81% yld, 97% anti

4a: R = Ph, R' = Me, 74% yld, 94% anti

It is noteworthy that the enolboration of 1-bromo-2-butanone is very regionselective. We obtained none of the product resulting from the enolboration on the ethyl side of the ketone. However, when bromo-acetone (2e) was enolized with reagent 1, we obtained a 1:1 mixture of aldol products resulting from the enolization of the methyl and bromomethyl groups. In this case also, the α -bromo- β -hydroxyketone obtained revealed an *anti:syn* ratio of 91:9 (Eq. 2).

In conclusion, we have achieved the diastereoselective enolboration-aldolization of α -bromomethyl ketones with dicyclohexylboron chloride. The aldol products can be readily converted to α -epoxyketones.³

A typical experimental procedure is as follows: All operations were carried out under a nitrogen atmosphere. The α -bromomethylketone (5.0 mmol) was added, dropwise, at 0°C, to a solution of 1 (1.69 g, 5.5 mmol) and Et₃N (0.55 g, 5.5 mmol) in Et₂O (8 mL). The enolborinate was formed instantly with the concurrent formation of solid Et₃N·HCl. The mixture was stirred for an additional hour (2 h at rt for 2d) and the Et₃N·HCl was removed by filtration. The filtrate was cooled to -78° C, the aldehyde (5.0 mmol) was added, and the mixture was stirred for 3 h. Methanol (5 mL) was then added, followed by the addition of H₂O₂ (30%, 2 mL). The mixture was warmed to rt and stirred for 3 h. Water (20 mL) was added and the organics were extracted with Et₂O (3×20 mL), washed with brine, and dried over MgSO₄. Removal of solvents provided the crude product which was purified by flash column chromatography over silica gel (hexanes:EtOAc, 8:2).

Acknowledgements

Financial assistance from the Purdue Borane Research Fund is gratefully acknowledged.

References

- 1. Mukaiyama, T.; Shiina, I.; Iwadre, H.; Saitoh, M.; Nishimura, T.; Ohkawa, N.; Sakoh, H.; Nishimura, K.; Tani, Y.; Hasegawa, M.; Yamada, K.; Saitoh, K. Chem. Eur. J. 1999, 5, 121.
- 2. Mukaiyama, T.; Inoue, T. Chem. Lett. 1976, 559.
- 3. Mukaiyama, T.; Haga, T.; Iwasawa, N. Chem. Lett. 1982, 1601.
- 4. Takahashi, A.; Shibasaki, M. J. Org. Chem. 1988, 53, 1227.
- 5. Sasai, H.; Kirio, Y.; Shibasaki, M. J. Org. Chem. 1990, 55, 5306.
- 6. Sasai, H.; Arai, S.; Shibasaki, M. J. Org. Chem. 1994, 59, 2661.
- 7. Brown, H. C.; Dhar, R. K.; Bakshi, R. K.; Pandiarajan, P. K.; Singaram, B. J. Am. Chem. Soc. 1989, 111, 3411.